(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__eq(0, 0) → true
a__eq(s(X), s(Y)) → a__eq(X, Y)
a__eq(X, Y) → false
a__inf(X) → cons(X, inf(s(X)))
a__take(0, X) → nil
a__take(s(X), cons(Y, L)) → cons(Y, take(X, L))
a__length(nil) → 0
a__length(cons(X, L)) → s(length(L))
mark(eq(X1, X2)) → a__eq(X1, X2)
mark(inf(X)) → a__inf(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(length(X)) → a__length(mark(X))
mark(0) → 0
mark(true) → true
mark(s(X)) → s(X)
mark(false) → false
mark(cons(X1, X2)) → cons(X1, X2)
mark(nil) → nil
a__eq(X1, X2) → eq(X1, X2)
a__inf(X) → inf(X)
a__take(X1, X2) → take(X1, X2)
a__length(X) → length(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(A__INF(mark(z0)), MARK(z0))
MARK(take(z0, z1)) → c14(A__TAKE(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(length(z0)) → c15(A__LENGTH(mark(z0)), MARK(z0))
S tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(A__INF(mark(z0)), MARK(z0))
MARK(take(z0, z1)) → c14(A__TAKE(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(length(z0)) → c15(A__LENGTH(mark(z0)), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
S tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
K tuples:none
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__EQ(x1, x2)) = x1 + x2
POL(MARK(x1)) = [2]x1
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(eq(x1, x2)) = x1 + x2
POL(inf(x1)) = [1] + x1
POL(length(x1)) = x1
POL(s(x1)) = [4] + x1
POL(take(x1, x2)) = x1 + x2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
S tuples:
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
K tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(inf(z0)) → c13(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__EQ(x1, x2)) = [5] + x1
POL(MARK(x1)) = [5] + [2]x1
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(eq(x1, x2)) = x1
POL(inf(x1)) = [4] + x1
POL(length(x1)) = x1
POL(s(x1)) = x1
POL(take(x1, x2)) = [4] + x1 + x2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
S tuples:
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
K tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
We considered the (Usable) Rules:none
And the Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__EQ(x1, x2)) = 0
POL(MARK(x1)) = [1] + [2]x1 + [3]x12
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(eq(x1, x2)) = x1 + x2
POL(inf(x1)) = x1
POL(length(x1)) = [3] + x1
POL(s(x1)) = 0
POL(take(x1, x2)) = [3] + x1 + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
S tuples:
MARK(length(z0)) → c15(MARK(z0))
K tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(length(z0)) → c15(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A__EQ(x1, x2)) = x1 + x2
POL(MARK(x1)) = x12
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(eq(x1, x2)) = [1] + x1 + x2
POL(inf(x1)) = x1
POL(length(x1)) = [1] + x1
POL(s(x1)) = x1
POL(take(x1, x2)) = [1] + x1 + x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__eq(0, 0) → true
a__eq(s(z0), s(z1)) → a__eq(z0, z1)
a__eq(z0, z1) → false
a__eq(z0, z1) → eq(z0, z1)
a__inf(z0) → cons(z0, inf(s(z0)))
a__inf(z0) → inf(z0)
a__take(0, z0) → nil
a__take(s(z0), cons(z1, z2)) → cons(z1, take(z0, z2))
a__take(z0, z1) → take(z0, z1)
a__length(nil) → 0
a__length(cons(z0, z1)) → s(length(z1))
a__length(z0) → length(z0)
mark(eq(z0, z1)) → a__eq(z0, z1)
mark(inf(z0)) → a__inf(mark(z0))
mark(take(z0, z1)) → a__take(mark(z0), mark(z1))
mark(length(z0)) → a__length(mark(z0))
mark(0) → 0
mark(true) → true
mark(s(z0)) → s(z0)
mark(false) → false
mark(cons(z0, z1)) → cons(z0, z1)
mark(nil) → nil
Tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
S tuples:none
K tuples:
A__EQ(s(z0), s(z1)) → c1(A__EQ(z0, z1))
MARK(inf(z0)) → c13(MARK(z0))
MARK(eq(z0, z1)) → c12(A__EQ(z0, z1))
MARK(take(z0, z1)) → c14(MARK(z0), MARK(z1))
MARK(length(z0)) → c15(MARK(z0))
Defined Rule Symbols:
a__eq, a__inf, a__take, a__length, mark
Defined Pair Symbols:
A__EQ, MARK
Compound Symbols:
c1, c12, c13, c14, c15
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))